Machine Learning A-Z : Become Kaggle Master


Machine Learning A-Z : Become Kaggle Master

Master Machine Learning Algorithms Using Python From Beginner to Super Advance Level including Mathematical Insights.

What you’ll learn

  • Master Machine Learning on Python
  • Learn to use MatplotLib for Python Plotting

  • Learn to use Numpy and Pandas for Data Analysis

  • Learn to use Seaborn for Statistical Plots
  • Learn All the Mathmatics Required to understand Machine Learning Algorithms
  • Implement Machine Learning Algorithms along with Mathematic intutions
  • Projects of Kaggle Level are included with Complete Solutions
  • Learning End to End Data Science Solutions
  • All Advanced Level Machine Learning Algorithms and Techniques like Regularisations , Boosting , Bagging and many more included
  • Learn All Statistical concepts To Make You Ninza in Machine Learning
  • Real World Case Studies
  • Model Performance Metrics
  • Deep Learning
  • Model Selection
  • Any Beginner Can Start this Course
  • 2+2 knowledge is more than sufficient as we have covered almost everything from scratch.


Want to become a good Data Scientist?  Then this is a right course for you.

This course has been designed by IIT professionals who have mastered in Mathematics and Data Science.  We will be covering complex theory, algorithms and coding libraries in a very simple way which can be easily grasped by any beginner as well.

We will walk you step-by-step into the World of Machine Learning. With every tutorial you will develop new skills and improve your understanding of this challenging yet lucrative sub-field of Data Science from beginner to advance level.

We have solved few Kaggle problems during this course and provided complete solutions so that students can easily compete in real world competition websites.

We have covered following topics in detail in this course:

1. Python Fundamentals

2. Numpy

3. Pandas

4. Some Fun with Maths

5. Inferential Statistics

6. Hypothesis Testing

7. Data Visualisation

8. EDA

9. Simple Linear Regression

10. Multiple Linear regression

11. Hotstar/ Netflix: Case Study

12. Gradient Descent

13. KNN

14. Model Performance Metrics

15. Model Selection

16. Naive Bayes

17. Logistic Regression

18. SVM

19. Decision Tree

20. Ensembles – Bagging / Boosting

21. Unsupervised Learning

22. Dimension Reduction

23. Advance ML Algorithms

24. Deep Learning

Who this course is for:
  • This course is meant for anyone who wants to become a Data Scientist

Created by Teclov Pvt Ltd
Last updated 11/2018
English [Auto-generated]

Size: 13.97 GB

Download Now

  1. neha says

    Seeds please

  2. Sanish Thapa says

    Seed Please

  3. Ashwin says

    Seed please

  4. Kumar says

    Seed please

  5. Sukanya says

    Seed please

  6. Naresh says

    Seed please

  7. Akash says

    Seeds please

  8. Jeevan says

    Hi , please provide the seeding for atleast 3 days. It’s a huge file.
    Thanks for sharing knowledge.

  9. Kumar says

    Seeds please

  10. Neha says

    Seeds please

  11. Kumar says

    Seeds please

  12. Likhith says

    Seeds please

  13. Likith says

    Seeds please

  14. Onur says

    Seed please …

Leave A Reply

Your email address will not be published.